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A Short Existence Proof for Correlation Dimension
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The Grassberger Hentschel Procaccia correlation dimension has been put on a
rigorous basis by Pesin and Tempelman. We simplify their proof that this
dimension is given in terms of the measure of neighborhoods of the diagonal.
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Let (X, p) be a separable metric space. Suppose that n is an ergodic prob-
ability measure for the continuous map/: X-> X. The r neighbourhood of
the diagonal in XxX is denoted by Sr. That is Sr := {(.v, v)e Xx X:
p ( x , y ) ^ r } . The function q>(r) = \'(Sr) is monotone increasing where v is
the product measure /*x/;. For xeX and neN we let C(.v, n, r) denote
l/n2${(i, j): (/''(x), fJ(x))eSr,0^i, j<n}, the proportion of pairs of
points in part of the orbit that are closer than r. Roughly speaking, if, for
/i almost every x, for large n and small r, we have C(,v, n, r) ~ ra then a is
called the correlation dimension'3' of the measure //. To give a precise
definition of the correlation dimension it is fundamental to prove the
following theorem, as was done for invertible / by Pesin'u and, in a more
general context, by Pesin and Tempelman.<2>

Theorem 1. There is a set YcX of full ^-measure such that for
each xe Y

provided (p is continuous at r.
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Hence the correlation dimension of// , lim inf r_^0 log q>(r)/log r can be
estimated from a long //-typical trajectory off. Our aim here is to give a
short proof of this theorem.

Proof. For each weN take a finite partition of X, denoted stfm : =
{AJ':0^j^M(m)}, such that ju(A%)^2~m and diam(^y

m)^2-m for
0<yXM(m). Since X is separable and / u(A ' )<oo such a partition
obviously exists. Fix meN and r>0. Let #' := {Ce^x jtfm: CcSr}
and ^" :={C6j/mx^?"": CnS r^0). The next two inequalities follow
immediately from the definitions:

Further,

By the Birkhoff ergodic theorem we are able to choose YcX with
ti(Y) = \ such that

Fix x e Y. For each m, we choose N such that

Then, for each C = AxA', with A, A'e ^"",

and

as
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Thus from this and (2) we obtain

Using this and (3) we obtain that

Let m -» co. Since q>(r) = v(Sr) is continuous at r we immediately obtain the
statement of the theorem.

We remark that in our proof above we have never used the property
of metric spaces that p(x, y) = 0 implies that x = y. So our proof gives more
than Theorem 1. What we proved in fact is that the statement of Theorem 1
holds if (X, p) is a separable pseudo-metric space, (p: X~x X^> R"1" is called
a pseudo-metric if p(x, 2) ̂ p(x, y) + p ( y , -) and p(x, y) = p ( y , x ) . )
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